Referenced Research

Key scientific papers consulted in developing this project

Theoretical Basis

Objective

The aim is to predict the probability, in a given location and week, that the wild mushroom known as the Caesar's mushroom (Amanita caesarea) will exceed a production threshold (which varies depending on the season).

Symbols

Throughout the theoretical basis, we will use the following symbols to represent different variables.

  • =Probability [0,1]\wp = Probability \ [0,1]: The probability is a value between 0 and 1. (For a better understanding, read the method.)
  • i=i = Region/Point: This variable is used to determine the point at which the calculation will be performed. It consists of a pair of data points, which represent the central coordinates of a range of n km2km^2.
  • t=t = Date This variable represents one week in a given year. This is due to the little change in the behavior of ecosystems in periods of a single day
  • k=k = Previous year This represents a year from which we want to process historical values, which we use to calculate and compare the NDVI.
  • SM=SM = Soil moisture This data is measured in m3m^3 of water per m3m^3 of soil.
  • P=P = Precipitation Variable used to evaluate precipitation in a certain area, measured in mmmm
  • T=T = Temperature Degrees Celsius of the environment in a given period
  • NDVI=NDVI = Normalized Difference Vegetation Index The NDVI allows us to analyze the phenological behavior of vegetation in a given area

The following set of data is derived from the analysis of the behavior of Amanita caesarea in controlled environments, to understand how they relate to all the variables we have mentioned above. Below we include their meanings and symbols

  • γ=\gamma = NDVI impact coefficient
  • β=\beta = Activation impact coefficient
    • β1=\beta_1 = Soil moisture impact coefficient
    • β2=\beta_2 = Temperature impact coefficient
    • β3=\beta_3 = Precipitation impact coefficient
  • α=\alpha = Threshold impact coefficient

Biological processes to consider

Accumulation of resources in previous years (slow process)

Thanks to the use of NDVI, we can identify the amount of carbon that has remained in certain areas of soil, which we can use to deduce the behavior of the ecosystem (growth of different species) over a certain period of time.

Current climate season (weekly process)

Variables such as precipitation, temperature, and soil moisture allow us to approximate the behavior of the fungus in an “immediate” way.

Data management

Sources of information

Free databases from satellites provided in the resources of the current challenge, such as:

Method

  1. The data for the following variables are standardized:
  • NDVIi,tk^\widehat{NDVI_{i,t-k}}
    • SMi,t^\widehat{SM_{i,t}}
  • Ti,t^\widehat{T_{i,t}}
  • Pi,t^\widehat{P_{i,t}}
  1. We calculate the resource index R=γ0+γ1NVDIt1+γ2NVDIt2+γ3NVDIt12R = \gamma_0 + \gamma_1NVDI_{t-1}+\gamma_2NVDI_{t-2}+\gamma_3NVDI^2_{t-1}
  2. We calculate the activation index A=β0+β1SM+β2T+β3PA = \beta_0 + \beta_1SM + \beta_2T+\beta_3P
  3. We calculate the probability of the development threshold being exceeded logit(Pi,t)=α+θ1Ri,t+θ2Ai,t+θ3(Ri,t×Ai,t)+θXXi+ui+vt\text{logit}(P_{i,t}) = \alpha + \theta_1 R_{i,t} + \theta_2 A_{i,t} + \theta_3 (R_{i,t} \times A_{i,t}) + \boldsymbol{\theta_X}^\top \mathbf{X}_{i} + u_i + v_t Pi,t=11+elogit(Pi,t)P_{i,t} = \frac{1}{1 + e^{-\text{logit}(P_{i,t})}}
2022

RECOLECCIÓN, COMERCIALIZACIÓN Y CONSUMO DE HONGOS SILVESTRES EN LA REGIÓN MIXTECA DE OAXACA, MÉXICO

López-Hernández, Abimael, Arellano Mont, Lluvia J., Uribe Jiménez, Itzel, & Aparicio Aparicio, Juan Carlos

Revista Etnobiología

Esta investigación constituye una contribución al conocimiento de la etnomicología en la subregión de la Mixteca Alta de Oaxaca.

2014

Age class influence on the yield of edible fungi in a managed Mediterranean forest

Ágreda, Teresa; Cisneros, Óscar; Águeda, Beatriz; Fernández-Toirán, Luz Marina

Mycorrhiza

Se analizó el efecto del año de muestreo y la edad del rodal en la estructura, dinámica y producción de hongos comestibles en un bosque mediterráneo de Pinus pinaster en España. Se registraron 153 especies, 55 comestibles, con una producción promedio de 19.8 kg ha⁻¹, destacando Lactarius deliciosus. La producción fue mayor en rodales de mediana edad (41-60 años) y mostró una fuerte variabilidad interanual.

2020

Primary productivity and climate control mushroom yields in Mediterranean pine forests

Olano, José Miguel; Martínez-Rodrigo, Raquel; Altelarre, José Miguel; Ágreda, Teresa; Fernández-Toirán, Marina; García-Cervigón, Ana I.; Rodríguez-Puerta, Francisco; Águeda, Beatriz

Agricultural and Forest Meteorology

La productividad de hongos en bosques mediterráneos depende tanto del clima como de la productividad primaria del año anterior, medida mediante NDVI y humedad del suelo.

2019

Comparison of Mathematical Models Describing Mushroom (Amanita caesarea) Drying

Ivanova, Miroslava T.; Katrandzhiev, Nedyalko T.; Dospatliev, Lilko K.; Papazov, Penko K.

Journal of Chemical Technology and Metallurgy

Se compararon once modelos matemáticos para describir el isotérmico del hongo Amanita caesarea. El modelo de Henderson y Pabis modificado mostró el mejor ajuste con R² > 0.999.

Try Our Demo